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Recently a Resistive Magnetohydrodynamics (MHD) package has been added to the KULL code. In order to
be compatible with the underlying hydrodynamics algorithm, a new sub-zonal magnetics discretization was
developed that supports arbitrary polygonal and polyhedral zones. This flexibility comes at the cost of many
more unknowns per zone—approximately ten times more for a hexahedral mesh. We can eliminate some
(or all, depending on the dimensionality) of the extra unknowns from the global matrix during assembly
by using a Schur complement approach. This trades expensive global work for cache-friendly local work,
while still allowing solution for the full system. Significant improvements in the solution time are observed
for several test problems. (UNC)
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Figure 1: The sub-zonal mesh in 2D (left) and
3D (right). In 3D, 24 tetrahedral sub-elements
are added to each hexahedron.

Introduction
A resistive magnetohydrodynamics (MHD) pack-
age [3] has recently been added to the KULL code
[10]. KULL supports unstructured, arbitrary polyg-
onal and polyhedral mesh zones. The MHD algo-
rithm is one of the most tightly coupled physics
packages to the underlying hydrodynamics dis-
cretization in the code. KULL employs a compati-
ble algorithm [5, 2] that uses sub-zonal corner pres-
sures. The extension of the hydro algorithm to sup-
port magnetic fields also needs sub-zonal magnetic
stresses.

We have chosen to discretize our MHD equations
on the sub-zonal elements called “sides” in KULL
that consist of the triangles formed in 2D by two
consecutive nodes and the zone center and of the
tetrahedrons in 3D formed by two neighboring
nodes, the face center, and the zone center, as show
in Figure 1. We will use the term “side” to denote
either a triangle or tetrahedron, depending on the
dimensionality of the problem. Discretizing on the
side sub-mesh allows us to support fully arbitrary
polygonal and polyhedral zone shapes, as well as to
match the sub-zonal characteristics of the hydrody-
namics algorithm.

The evolution of the magnetic field due to diffusion

is described by

∇× ∆t

µ0
∇×E+ σ ·E = ∇× Bn

µ0
and (1)

Bn+1 = Bn −∆t∇×E. (2)

In order to ensure that ∇·B = 0 always, we choose
to solve for the electric field integrated along the
edges in the mesh, or

Ee =

∫
e
E · dl. (3)

Instead of standard nodal finite elements, we use
the lowest order Nédélec (edge) finite elements [9],
where the vector edge basis function has an integral
of one along its edge, and zero along any other edge
in the mesh. This ensures that ∇·B = 0 to machine
precision in our simulation. Using the edge basis
functions, we apply a standard Galerkin method to
derive a matrix equation,

Ax = y. (4)

The number of unknowns in the vector x is the num-
ber of edges in the sub-zonal side mesh, which can
be considerably larger than the number of edges in
the original zonal mesh.

The increased unknown count relative to a standard
zonal discretization may seem high, but the bene-
fits outweigh the costs. Discretizing the magnetic
diffusion equation on the sub-zonal mesh allows us
to support an unstructured, arbitrary polygonal or
polyhedral mesh. More importantly, it is necessary
for stability when coupling with the underlying hy-
drodynamics algorithm. The rest of this paper is
focused on how we significantly speed up the solu-
tion of Eq. 4 by trading extra local work during the
matrix construction for expensive work during the
global matrix solve.

Reduced Global Matrix
Instead of solving Eq. 4 directly for the full num-
ber of unknowns in the problem, we perform a two-
step solve. As we assemble the matrix, we preform
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some local dense linear algebra to temporarily elim-
inate some unknowns to form a smaller global ma-
trix. After solving the global matrix, we then solve
for the unknowns we eliminated, recovering the full
solution as if we solved the full problem.

Reduced Matrix Assembly and Full Solution
A finite element discretization can be specified by
a set of elements {g}, with corresponding degrees
of freedom (dofs) {xg}, and local element matrices
{Ag}, which are assembled to form A. With that
definition in mind, we consider the following 6-step
process for the solution of the full global problem,
Eq. 4:

1. Gather sides into groups. Each original side
is in exactly one group. How to choose these
groups will be discussed in the next section.

2. Compute matrix and right hand side contri-
butions to the full matrix for the sides in this
group.

Ag =
∑
s

As, bg =
∑
s

bs (5)

3. Determine the interior and boundary degrees
of freedom of the group.(

Ag,ii Ag,ib

Ag,bi Ag,bb

)(
xg,i

xg,b

)
=

(
yg,i

yg,b

)
, (6)

where i stands for the “interior” unknowns
that are eliminated, and b corresponds to the
“boundary” unknowns.

4. The global matrix element contributions for
the interior unknowns are completely con-
tained in this group sub-matrix. We can then
eliminate them from the group matrix, and
calculate their influence on the boundary un-
knowns, which are coupled to other groups.
The reduced group matrices and right hand
sides are computed using a Schur comple-

ment, and summing them into the global ma-
trix using

Sg = Ag,bb −Ag,biA
−1
g,iiAg,ib, (7)

yg = yg,b −Ag,biA
−1
g,iiyg,i, (8)

S =
∑
g

Sg, and y =
∑
g

yg. (9)

The inversion of Ag,ii is a direct inversion,
but is computationally inexpensive since it is
usually less than a 6 × 6 matrix, and dense
linear algebra of this form is very efficient on
modern compute cores.

5. Solve the reduced global linear system for
all the coupled boundary unknowns from the
groups,

Sxb = y. (10)

6. Locally compute the solution for the interior
edges, finding the values of the unknowns
eliminated from the global matrix, using

xg,i = A−1
g,ii (bg,i −Ag,ibxg,b) . (11)

It is important to note that because Aii is a block-
diagonal sparse matrix, the final matrix S is also
sparse, and easy to assemble in an zone by zone
manner, much like if we assembled A instead.

The output of the algorithm is an induced finite el-
ement discretization on the reduced grid with ele-
ments that are the groups, degrees of freedom xb,
and element matrices {Sg}. We emphasize that this
provides a consistent way of introducing a finite ele-
ment discretization on any set of reduced elements,
including geometries without a natural reference el-
ement. This is similar to the Piecewise Linear finite
elements [11, 1], but they assume certain averaging
rules for the eliminated unknowns, while in contrast
we retain the unknowns eliminated from the global
solve as independent variables.

We use the hypre library [7] to perform the lin-
ear solve in Eq. 10. Both the original matrix and
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.
(a) Full triangu-
lated mesh

.
(b) Reduced
elements (yel-
low) and interior
unknowns (red)
identified

.
(c) Remain-
ing (reduced)
elements and
degrees of
freedom (blue)

Figure 2: In RZ the full triangular grid has
edge degrees of freedom. The reduced elements
are simply the quadrilateral elements. The final
reduced mesh has the same number of degrees
of freedom and sparsity pattern as the original
quadrilateral grid.

the reduced matrix can have large null spaces (or
near-null spaces) [4]. Specialized preconditioners,
such as BoomerAMG [6] and the Auxiliary-space
Maxwell Solver (AMS) [8], are needed to get good
performance from the linear solvers.

Identifying Eliminated Edges
In 2D-XY coordinates, our edge unknowns are out
of the plane of the mesh, and degenerate into nodes.
We form groups of sides that correspond to the orig-
inal mesh zones. The interior unknown is the node
at the center of the zone. In axisymmetric RZ coor-
dinates, we again identify the zone-interior sides as
the ones to group and the zone-interior edges as the
ones to eliminate, as show in Figure 2. This leads to
a reduced matrix S that is the same size as the stan-
dard quad discretization and has the same sparsity
pattern, but it has different matrix elements.

In three dimensions, choosing the sides that form a
mesh-zone is not ideal. The number of nonzeros in
the reduced matrix is approximately 2.5 times the
number of nonzeros as the full matrix. It is better
to group the sides that touch the faces of the mesh
zones, and to eliminate the edges that correspond to
the interior of the set of sides that touch that face,

. .

Figure 3: Hexahedral (left) and octahedral
(right) reduced elements in 3D. The interior de-
grees of freedom, which will be eliminated, are
highlighted in red. The remaining reduced de-
grees of freedom are colored in blue.

as shown in Figure 3.

If we consider an infinite quadrilateral or hexahe-
dral mesh, we can estimate the size of the origi-
nal matrix A and the reduced matrix for XY, RZ,
and XYZ geometries as a function of the number of
zones in Table I. Again, note that for the 3D case of
eliminating the hexahedral zone interior edges the
number of nonzeros in the reduced matrix is, in fact,
larger than the original matrix. This increases the
run time instead of reducing it.

Table I: Asymptotic estimates for the number of
rows, nrows, and non-zeros, nnz, in the original
and reduced matrices in each geometry, where
Nz is the number of zones. In 3D, two different
eliminations are shown for the hexahedral-zone
interior, SH , and the face-based octahedron, SO.

matrix nrows (reduction) nnz (reduction)

AXY 2 Nz 14 Nz

SXY Nz (×2) 9 Nz (×1.6)

ARZ 6 Nz 30 Nz

SRZ 2 Nz (×3) 14 Nz (×2.1)

A 29 Nz 461 Nz

SH 15 Nz (×1.9) 1107 Nz (×0.4)

SO 11 Nz (×2.6) 335 Nz (×1.4)
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Figure 4: The Box problem is a simple test prob-
lem that we use to test the effects of varying
solver parameters, material properties, and as-
pect ratios. The mesh, with sub-zones, is shown
with a high conductivity region shown in red
(σc = 1) and a varying low conductivity shown
in blue (0 ≤ σnc ≤ 1).

Results
We now turn our attention to testing the speed and
robustness of the proposed algorithm on two test
problems. In the following experiments we use the
Conjugate Gradient (CG) Krylov solver with the
BoomerAMG and AMS preconditioners from the
hypre library applied in the XY and RZ/3D cases,
respectively. The tests were run on the multi-core
cluster Hera at Lawrence Livermore National Lab-
oratory (LLNL).

The Box Problem
We start with a simple diffusion problem posed on
a structured box in 3D, see Figure 4, with the XY
and RZ cases corresponding to the front and the top
sides, respectively. The box is split in two parts,
with the conductivity σ varying between σc = 1 in
the material half of the domain and 0 ≤ σnc ≤ 1
in the non-conducting (void) half. The mesh is ini-
tially uniform, but we stretch it to test the depen-
dence on the aspect ratio. For this problem, we
take ∆t/µ = 10−3 and use convergence tolerance
of 10−10 in CG.

We explore the run-time behavior in XY with re-

spect to increasing aspect ratio 1/ε in Table II. We
set σnc/σc = 0 and report the number of CG iter-
ations (nit) as well as the combined time spent in
the solver setup and solution phases (tsolver). The
remaining time, including the matrix assembly as
well as the elimination and the recovery of the in-
ternal degrees of freedom, is denoted by (tassemble).
For all of these quantities we present the data for the
full and reduced global matrix solve in the format
“original/reduced”. Finally, we compute and report
the total run time speedup of the computational cy-
cle due to the reduction.

Table II: Comparison of overall solution perfor-
mance for the Box problem in XY while varying
the aspect ratio 1/ε. The results are reported in
the original/reduced format.

1/ε nit tassemble tsolver speedup
1 10/ 10 0.29/0.23 0.46/0.25 ×1.6
4 12/ 8 0.28/0.21 0.38/0.14 ×1.8

16 12/ 8 0.28/0.22 0.36/0.15 ×1.8
64 11/ 7 0.28/0.22 0.34/0.14 ×1.7

256 11/ 6 0.27/0.22 0.33/0.12 ×1.8
1024 11/ 7 0.28/0.23 0.33/0.15 ×1.6
4096 11/ 7 0.28/0.23 0.33/0.15 ×1.6

From Table II we see that the AMG-CG solver per-
forms better on the reduced problem, both in terms
of number of iterations and time. Even when the
number of iterations is the same (ε = 1) there is
still a factor of 1.6 speedup (1.8 in the solver). The
speedup factor is nearly constant for all aspect ra-
tios. Note also the interesting fact that, even with
the extra work of inverting the local Aii and the re-
covery of xi, the assemble time in Table II is always
less for the reduced problem. This is a trend in all
of our results. We suspect this is due to the cost
of moving data from main memory to the proces-
sors. Each element in the global matrix is only used
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once per solver iteration, while the matrix elements
contained in Aii are used many times in the local
inversion process from the processor’s cache.

Next, we consider similar tests in the RZ case,
where σnc/σc = 0 and we use the the pure void so-
lution procedure from [4]. In other words, we apply
AMS directly to the Schur complement of a singular
matrix with a large kernel.

The timing results, presented in Table III, show that
the convergence deteriorates due to vanishing co-
efficients close to the axis of rotation, but overall
the reduced AMS solver significantly outperforms
the solver applied directly to A. In particular, for
the problem with the worse aspect ratio, we get
more than a factor of 45 speedup in the reduced
solver leading to more than 39 times total simula-
tion speedup.

Table III: Comparison of overall solution perfor-
mance for the Box problem in RZ and varying
aspect ratio ε. The results are reported in the
original/reduced format.

1/ε nit tassemble tsolver speedup
1 10/10 1.48/0.84 13.5/3.91 ×3.2
4 10/ 8 1.77/0.75 13.7/3.00 ×4.1

16 28/ 7 1.80/0.80 32.4/2.89 ×9.2
64 84/ 7 1.49/0.75 69.5/2.51 ×21.7

256 216/14 1.57/0.76 194./4.43 ×37.6
1024 594/22 1.74/0.74 451./6.25 ×64.7
4096 694/21 0.94/0.75 252./5.61 ×39.8

Finally, we consider the Box problem tests in 3D.
In Table IV we investigate both regular AMS for
conductivity jump of four orders of magnitude, as
well as the robust AMS version for the pure void
case. We note that there is a little difference be-
tween these cases in terms of solver performance

(except that the pure void solver is a bit slower).
This trend is typical for all the experiments we have
run. Looking at the iteration counts in Table IV, we
see that the convergence deteriorates significantly
on stretched grids. There is a significant improve-
ment due to the reduction, with speedup factors be-
tween 2 and 4.

Table IV: Comparison of overall solution times
for the Box problem in 3D with varying aspect
ratio ε. The results for two different conductivity
ratios are reported in the original/reduced for-
mat.

1/ε nit tassemble tsolver speedup
σnc/σc = 10−4

1 9/ 8 6.58/5.04 40.3/17.3 ×2.1
2 9/ 8 7.34/5.14 47.6/16.1 ×2.6
4 16/ 9 7.10/5.07 67.6/16.5 ×3.5
8 29/ 15 7.71/5.15 111./23.8 ×4.1

16 49/ 26 7.40/5.15 178./37.1 ×4.4
32 79/ 42 8.15/5.11 262./55.1 ×4.5
64 121/ 66 7.83/4.95 372./85.1 ×4.2

128 180/107 6.66/5.23 546./138. ×3.8
σnc/σc = 0

1 9/ 8 6.30/5.39 53.8/25.1 ×2.0
2 9/ 8 5.88/5.32 51.8/23.4 ×2.0
4 16/ 9 6.15/5.26 72.6/24.8 ×2.6
8 29/ 15 5.95/5.23 117./32.5 ×3.3

16 50/ 26 6.41/5.30 190./54.3 ×3.3
32 79/ 42 6.32/5.31 283./79.2 ×3.4
64 122/ 66 6.02/5.29 440./122. ×3.5

128 177/103 6.60/5.30 657./187. ×3.4

Coaxial Conductors
Next we applied the matrix reduction to a prob-
lem that mocks up the conductivity variation seen
in Z-pinch simulations. The domain is a quarter of
four concentric cylinders with different conductivi-
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Figure 5: An idealized test problem mocks up the
conductivity jumps seen in Z-pinch simulations
with four regions of varying conductivity.

ties σ = {10−2, 10−8, 10−2, 0} from the inside out.
The mesh and an approximate solution are shown
in Figure 5. The XY and RZ cases correspond to the
top and front sides of the 3D domain. Note that the
jumps in σ and the pure void outer region make this
problem’s (near-)null space very challenging, and
AMS is required for its robust solution.

In this test, we perform a weak scalability test, in-
creasing the mesh refinement by a factor of two
each step, and increasing the number of processors
proportional to the total number of elements in the
problem. Our goal is not to show the full scalabil-
ity of the methods but rather to demonstrate their
relative performance on large problems.

We report the number of processors used (np), the
assembly time tassemble, the AMS setup time tsetup,
and the AMS-CG solve time tsolve as well as the
total simulation speedup. The results for all three
geometries (XY, RZ, and 3D) are shown in Table V.
Note that not only are the total solve times reduced,
but the matrix assembly time is also reduced. More

Table V: The matrix sizes, iteration counts, and
timings for the Coaxial problem in all three ge-
ometries (XY, RZ, and 3D) show that the benefits
of the matrix reduction extend to more realistic
problems. The results are reported in the origi-
nal/reduced format.

np tassemble tsetup tsolve speedup
XY results

1 0.13/0.11 0.07/0.03 0.21/0.08 ×1.8
4 0.14/0.13 0.09/0.05 0.23/0.09 ×1.6

16 0.15/0.12 0.12/0.08 0.36/0.16 ×1.7
64 0.21/0.14 0.35/0.19 0.79/0.29 ×2.1

RZ results
1 0.20/0.12 0.21/0.08 0.57/0.27 ×2.1
4 0.20/0.11 0.34/0.15 0.84/0.42 ×2.0

16 0.22/0.13 0.52/0.26 1.42/0.62 ×2.1
64 0.23/0.14 1.05/0.63 2.13/1.17 ×2.0

3D results
1 3.66/2.59 10.0/3.20 23.1/6.83 ×2.9
8 4.08/2.80 32.4/6.95 53.2/10.7 ×4.4

64 4.37/3.00 73.1/16.9 89.7/20.6 ×4.1
512 4.53/3.22 122./41.8 149./66.5 ×2.5
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work can be performed locally with in-cache data
before filling in the global-matrix data. Speedups
were between 1.6 and 4.4, which is a considerable
savings.

Conclusions
To reduce the run time of a new magnetic diffusion
package in KULL, we have developed a two-step
solution process that effectively trades more local
work for less global work. This procedure always
speeds up the solution, usually by a factor of two,
but sometimes by as much as a factor of nearly
40. This speedup comes from both a savings on
the global matrix size and reducing iteration counts
because the matrix properties have also improved.
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